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The advantage of a hybrid approach coupling natural element method (NEM) and boundary element method (BEM) is the 
conjunction of the inherent NEM accuracy and the BEM ability in modeling linear and deformable domains without any mesh. In a 
previous work, the coupling between standard NEM (1st order consistency) and a 0th order BEM was introduced. In the present work 
the performance of this coupling is tested for both methods in higher order versions. Results are presented in terms of convergence 
analysis and compared to a classic FEM-BEM coupling in terms of accuracy. The approach developed yields more accurate results 
with better convergence behavior, proving to be a good alternative in terms of accuracy for the simulation of unbounded problems. 
 

Index Terms—boundary element method, coupled numerical methods, natural element method.  
 

I. INTRODUCTION 

ir regions in computational electromagnetics are almost 
ubiquitous. In magnetostatics, for example, the accuracy 

of field quantities in air gaps is essential.  In this context the 
Boundary Element Method (BEM) takes advantage over 
others methods, once it can model linear and deformable 
domains requiring only the discretization of theirs interfaces 
[1]. 

Others regions, like magnetic materials, must be modeled 
by other numerical methods. Traditionally Finite Element 
Method (FEM) is used in these domains. However, in this 
work, the Natural Element Method (NEM) [2] is employed. It 
has been previously shown that this method can  provide 
highly accurate and computationally efficient solutions 
compared to FEM [3]. 

In a previous work [4] the coupling NEM-BEM was first 
introduced. In that paper, the scheme was based on a 1st order 
consistent NEM and a 0th order BEM. For the present work the 
consistency of both methods was improved to the 2nd order. 
The performance of this improved scheme is tested and 
compared to the previous one. The tests presented in this 
abstract have been performed on a 2D magnetostatic problem. 

II.  SCHEME FOUNDATIONS 

In this section we present briefly the main concepts 
involved on the implementation of the higher order NEM-
BEM coupling.  

A. Natural Element Method 

NEM standard shape functions are evaluated through 
geometrical relations based on a discretization scheme called 
Voronoï diagram [2]. At the same time that these shape 
functions provide smooth interpolation they keep important 
properties, like partition of unity, positiveness, and strict 
interpolation [2].  Among other things, these properties allow 
easy FEM-like implementation of resolution algorithms. 

However, as NEM shape functions present originally linear 
consistency, some additional technique must be applied in 
order to get higher order approximations. This issue was 
addressed in [5], when a higher order NEM method based on 
the de Boor algorithm was developed. The main idea of the 
technique is the combination of different levels of linear 
interpolation that generates approximations with controllable 
consistency and precision. The method was first applied to the 
electromagnetic domain in [6] with good results.    

B. Boundary Element Method 

If no source field in the free space is taken into account, the 
problem can be represented by a Laplacian equation in terms 
of a total scalar magnetic potential. The main idea is to solve 
Laplacian equation transforming the volume integral equation 
over the deformable domain into a surface integral over the 
boundary. The classic boundary integral equation is obtained 
by using the third Green’s identity [1] and solved using the 
point collocation method. The scalar potential and the normal 
component of the magnetic induction are both interpolated 
using 2nd order functions. 

C. Coupling both methods 

The results presented here are obtained through a reduced 
magnetic scalar potential. The coupling between NEM and 
BEM systems is taken into account by imposing the 
conservation of the normal component of the magnetic 
induction and the unicity of the potential on boundary. It is 
important to notice that the BEM part of the matrix is fully 
populated and the NEM part is sparse. By solving the coupled 
formulation, we get the reduced scalar magnetic potential on 
all nodes and the normal component of the magnetic induction 
on the boundary. 

III.   TEST CASE: U SHAPED ELECTROMAGNET 

A. Model 

Fig. 1 shows a U shaped electromagnet. In order to test the 
proposed scheme the magnetic induction was computed on the 

A 



path 1, in the air. The reduced magnetic field was computed 
on the second path, inside the electromagnet. 

 

 
Fig. 1. U shaped electromagnet. Material with linear permeability and a non-
meshed coil. Two different paths are considered. 

A. Interpolating the total magnetic field in the unbounded 
domain 

Fig. 2 presents the comparison between the new formulation 
and the 2nd order FEM solution (reference) for the evaluation 
of the magnetic induction vertical. This reference was ob-
tained through a mesh with more than 400,000 degrees of 
freedom (DoF). 

 

 
Fig. 2. Vertical component of the magnetic induction on path 1: comparison 
between FEM 2nd order and the approach presented in this work. The number 
of DoF for each NEM-BEM simulation case can be consulted in the Fig. 3. 
 

 
Fig. 3. Relative error (L2 norm) versus the number of DoF (three mesh densi-

ties: coarse, medium and dense). 
 

Fig. 3 presents the relative error on the vertical component 
of the magnetic induction for both NEM-BEM A (results from 
the previous work [4]) and NEM-BEM B (results from this 
new formulation) approaches. 

B. Interpolating the magnetic induction in the magnetic 
material 

Fig. 4 presents the comparison between the tested methods 
in terms of the horizontal component of the reduced magnetic 
field. It can be seen that the new scheme is smoother and 
closer to the reference if it is compared with the previous 
NEM-BEM and FEM-BEM approaches addressed in [4]. 

 

 
Fig. 4. Horizontal component of the reduced magnetic field on path 2: 
comparison between the reference and different hybrid approaches. 

IV.  CONCLUSION 

 
Since coupled approaches using BEM are still currently 

being applied [7], we propose an improvement of these 
schemes. In this paper, a hybrid NEM-BEM 2nd order 
formulation has been presented. It was able to provide 
accurate solutions even with very coarse discretizations. 
Regarding the next steps, we plan to compare the performance 
of this new formulation with the FEM using Whitney elements 
of 2nd degree. We also intend to compare the results presented 
in this paper, using a reduced magnetic scalar potential, with 
those from the coupled reduced and total scalar potentials or 
t0-φ formulations [8]. 
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